

Computational Logic
Module II - Set theory and knowledge graphs

Set theory in a nutshell: defining sets

We can define sets in two ways

Listing: The set is described by listing all its elements (for instance, $A=$ $\{a, e, i, o, u\})$.

Abstraction: The set is described through a property of its elements (for instance, $A=\{x \mid x$ is a vowel of the Latin alphabet $\}$).

Set theory in a nutshell: basic notions

- Empty Set. \varnothing is the set containing no elements.
- Membership. $\boldsymbol{a} \in \boldsymbol{A}$, element \boldsymbol{a} belongs to the set \boldsymbol{A}.
- Non-membership. $\boldsymbol{a} \notin \boldsymbol{A}$, element \boldsymbol{a} doesn't belong to the set \boldsymbol{A}.
- Equality. $\boldsymbol{A}=\boldsymbol{B}$, if and only if \boldsymbol{A} and \boldsymbol{B} contain the same elements.
- Inequality. $\boldsymbol{A} \neq \boldsymbol{B}$, if and only if it is not true that $\boldsymbol{A}=\boldsymbol{B}$.
- Subset. $\boldsymbol{A} \subseteq \boldsymbol{B}$, if and only if all elements in \boldsymbol{A} also belong to \boldsymbol{B}.
- Proper Subset. $\boldsymbol{A} \subset \boldsymbol{B}$, if and only if $\boldsymbol{A} \subseteq \boldsymbol{B}$ and $\boldsymbol{A} \neq \boldsymbol{B}$.
- Universal Set. The universal set is the set of all elements or members of all related sets and is denoted by the letter U.

Set theory in a nutshell: Venn Diagrams

Sets are typically represented with Venn Diagrams

EXAMPLE:

Set theory in a nutshell: operations

Union. Given two sets \boldsymbol{A} and \boldsymbol{B}, the union of \boldsymbol{A} and \boldsymbol{B} is the set containing the elements belonging to \boldsymbol{A} or to \boldsymbol{B} or to both, and is denoted with $\boldsymbol{A} \cup \boldsymbol{B}$.

Difference. Given two sets \boldsymbol{A} and \boldsymbol{B}, the difference of \boldsymbol{A} and \boldsymbol{B} is the set containing all the elements which are members of \boldsymbol{A}, but not members of \boldsymbol{B}, and is denoted with $\boldsymbol{A} \backslash \boldsymbol{B}$.

Intersection. Given two sets
 \boldsymbol{A} and \boldsymbol{B}, the intersection of \boldsymbol{A} and \boldsymbol{B} is the set containing the elements that belong both to \boldsymbol{A} and \boldsymbol{B}, and is denoted with $\boldsymbol{A} \cap \boldsymbol{B}$.

Complement. Given a universal set \boldsymbol{U} and a set \boldsymbol{A}, the complement of \boldsymbol{A} in \boldsymbol{U} is the set containing all the elements in \boldsymbol{U} that do not belong to \boldsymbol{A}, and is denoted with $\boldsymbol{U} \backslash \boldsymbol{A}$.

Set theory in a nutshell: cartesian product and relations

Cartesian product. Given two sets A and B, the Cartesian product of A and B is the set of ordered couples (a, b) where $a \in A$ and $b \in B$, formally:
$A \times B=\{(a, b): a \in A$ and $b \in B\}$
Relation. A relation R from the set A to the set B is a subset of the Cartesian product of A and B, formally:
$R \subseteq A \times B$
If $(x, y) \in R$, then we will write $x R y$ and we say ' x is R -related to y '.

Set theory in a nutshell: porperties of relations

Let R be a binary relation. R is:

- reflexive iff $a R a$ for all $a \in A$
- symmetric iff $a R b$ implies $b R a$ for all $a, b \in A$
- transitive iff $a R b$ and $b R c$ imply $a R c$ for all $a, b, c \in A$
- anti-symmetric iff $a R b$ and $b R a$ imply $a=b$ for all $a, b \in A$

EXAMPLES

- reflexive: equalTo
- symmetric: friendOf, roommateOf, siblingsOf
- transitive: ancestorOf, kindOf, partOf
- anti-symmetric: isDivisibleBy, subsetOf

Graph theory in a nutshell: defining graphs (I)

A graph \boldsymbol{G} is an ordered pair $\boldsymbol{G}=<\boldsymbol{V}, \boldsymbol{E}>$, where \boldsymbol{V} is the set of vertices (or nodes) and \boldsymbol{E} is the set of edges (or links). Edges are pairs of vertices.

A directed graph is a graph where edges are ordered pairs of distinct vertices $(\boldsymbol{x}, \boldsymbol{y}) . \boldsymbol{x}$ and \boldsymbol{y} are called the end points, where x is the tail and y is the head.

Graph theory in a nutshell: defining graphs (II)

A cycle is a path in which only the first and last vertices are equal. A cyclic graph is a graph which contains a cycle.

A directed acyclic graph (DAG) is a directed graph that does not contain any cycles.

A labeled graph is a graph where each vertex and edge is assigned a label.

Knowledge graphs

A knowledge graph is a labelled graph representing real world knowledge.

Vertexes belong to two disjoint sets:

- Entity types: the set of (named) entities in the world, such as a person, location, artifact...
- Data types: the set of values of the data properties of the entities, such as dates, numbers, texts...
Edges are relations of two types:
- Object properties: relations between two entities, such as createdBy, friendOf
- Data properties: relations between and entity and a values, such as bornOn

Examples of a knowledge graph and corresponding sets

Etype graphs

An Etype Graph, or schema, is a knowledge graph that focuses only on Entity types, Data types, Object properties and Data properties. It provides constraints on knowledge graphs with corresponding instances.

NOTICE: an ER diagram is a schema

