

Computational Logic Exercises Module II – World models and logic systems

Vincenzo Maltese

Preamble: World Models

A world model is a triple $\mathscr{W} = \langle L, D, I \rangle$ where:

(intensional world model)

$L = \{a\}$	L is an assertional language, with descriptive assertions
-------------	---

- D = {f} D is a domain of interpretation, a set of facts
- I: $L \rightarrow D$ I is an intepretation function that maps assertions to facts

(extensional world model)

- $L = \langle E, \{C\}, \{P\} \rangle$ L is an assertional language with assertions about: $E = \{e\}$ is a set of (names of) entities, $\{C\}$ is a set of concepts, where a concept is a name of a class, $\{P\}$ and a set of (object/data) properties.
- $D = \langle E, \{C\}, \{P\} \rangle$ D is a domain of interpretation, a set of facts about the entities $E = \{e\}$, their classes $C \subseteq E$ and properties $P \subseteq E \times \cdot \cdot \cdot \times E$
- I: $L \rightarrow D$ I is an intepretation function that maps assertions to facts

Preamble: Logic Systems

A **logic system** is a triple $\mathcal{I} = \langle L, D, I, \models \rangle$ or even $\mathcal{I} = \langle \mathcal{W}, \models \rangle$ where:

 $\mathscr{W} = \langle L, D, I \rangle$ W is a world model

 $\models \subseteq D X L$ \models is an entailment relation between subsets of the domain D (i.e. a specific model M) and assertions in the language L (i.e. a specific theory)

A (logic) language L can be formally defined by a set of atomic formulas and a grammar, i.e. a set of connectives and formation rules to combine atomic formulas into complex formulas.

For instance: <wff> ::= <atomic> <wff> ::= <wff> ⊔ <wff> <wff> ::= <wff> □ <wff>

World models (I)

Define an extensional world model W constituted by a language L, a domain D and an interpretation function I to formalize the following models M1, M2 and M3.

ANSWER: A possible W is as follows

 $L = \langle E = \{i1, i2, i3\}, C = \{INS, R, G, B, SL\}, R = \emptyset \rangle$

 $D = \langle E = \{a, b, c\}, C = \{insect, red, green, blue, sixlegs\}, R = \emptyset \rangle$

 $I(i1) = a; I(i2) = b; I(i3) = c; I(INS) = insect = \{a, b, c\}; I(R) = red = \{a\}; I(G) = green = \{b\}; I(B) = blue = \{c\}; I(SL) = sixlegs = \{a, b, c\}.$

World models (II)

Define a language L' \supseteq L and an interpretation function I' for the same problem that includes at least a complex formula.

ANSWER:

- $L' = L \cup \{INS \sqcap R\}$
- I' = (INS \sqcap R) = insect \cap red = {a}

Logic systems (I)

Define a logic system $L = \langle W, \vDash \rangle$, and in particular the entailment relation \vDash starting from the world model W defined before.

ANSWER: we need to provide it for the models M1, M2 and M3:

- $M1 \models INS(i1), M1 \models R(i1), M1 \models SL(i1)$
- $M2 \models INS(i2), M2 \models G(i2), M2 \models SL(i2)$
- $M3 \models INS(i3), M3 \models B(i3), M3 \models SL(i3)$

World Models (II)

Define an intentional world model W constituted by a language L, a domain D and an interpretation function I to formalize the following Venn Diagram V

ANSWER:

$$\mathsf{L} = \{\mathsf{A}, \, \mathsf{B}, \, \mathsf{A} \sqcap \, \mathsf{B}, \, \mathsf{A} \sqcup \, \mathsf{B}\}$$

$$D = \langle E, \{C\}, \{P\} \rangle$$

$$\mathsf{E} = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

 $I(A) = \{4, 7, 9\} \in \{C\};$ $I(B) = \{1, 2, 3, 4, 5\} \in \{C\};$ $I(A \sqcap B) = I(A) \cap I(B) = \{4\} \in \{C\};$ $I(A \sqcup B) = I(A) \cup I(B) = \{1, 2, 3, 4, 5, 7, 9\} \in \{C\}$

Logic systems (II)

Define a logic system L = $\langle W, \models \rangle$, and in particular the entailment relation \models starting from the world model W defined before.

ANSWER:

$$V \models A$$

 $V \models B$
 $V \models A \sqcap B$
 $V \models A \sqcup B$

Logic systems (III)

Define a theory T such that $V \models T$.

ANSWER: In this case, we may take any $T \subseteq L$, for instance {A, B, A \sqcup B}

Preamble: Reasoning problems

Model checking. Given T and M, check whether $M \models T$

Satisfiability. Given T, check whether there exists M such that $M \models T$

Validity. Given T, check whether for all M, $M \models T$

Unsatisfiability. Given T, check whether there is no M such that $M \models T$

Logical consequence. Given T1, T2 and a set of reference models {M}, check whether

 $T1 \models \{M\} T2$

Logical equivalence. Given T1, T2 and a set of reference models {M}, check whether

 $T1 \models \{M\} T2 \text{ and } T2 \models \{M\} T1$

Logic systems (IV): reasoning – model checking (a)

Given the theory T = {A, B, A \sqcup B}, and the model V below, check if V \models T

ANSWER: yes

Logic systems (IV): reasoning – model checking (b)

Given the theory T = {A, B, A \sqcap B}, and the model V below, check if V \models T

ANSWER: no

Logic systems (IV): reasoning – model checking (c)

Provide and example of Venn Diagram V' containing two sets A and B, and of a theory T' \subseteq {A, B, A \sqcap B, A \sqcup B} such that V' \nvDash T'.

ANSWER: We may take the theory $T' = \{A \sqcap B\}$ and any V' in which A and B are disjoint. In fact I(A \sqcap B) = I(A) \cap I(B) = Ø.

Logic systems (IV): reasoning – satisfiability

Given the theory $T = \{A, B, A \sqcap B\}$, check whether there exists V such that $V \models T$

ANSWER

Logic systems (V)

Say which of the following statements are true given the formalization provided before.

- a) $V \models D$
- b) $V \models A$
- c) $V \vDash \emptyset$
- d) $I((A \sqcap B) \sqcap B) = I(A \sqcap B)$
- e) $A \sqcap B$ is an atomic formula

ANSWER: b, d

Homework

Answer to the following questions

- 1. What are the main characteristics of a representation language?
- 2. What is the difference between extensional and intentional representations?
- 3. What is the difference between an atomic formula and a complex formula?
- 4. What is an interpretation function?
- 5. What is entailment and what are its properties?
- 6. What are the desired properties of logic languages?
- 7. When it is the case that a theory is correct and complete?
- 8. Can you describe the main reasoning problems?