

Computational Logic Exercises Module V - LOD applications and LODE

Well formed formulas

Which of the following complex formulas are syntactically correct in LOD? (TBOX formulas)
a) $A \equiv \exists R . C \sqcap \forall S . D$
b) $A \sqcap B \equiv C \sqcup D$
c) $A \equiv B \sqcap \neg C$
d) $A \sqsubseteq \neg C$
e) $A \subseteq B \sqcap \exists R . C$
f) $A \subseteq B \sqcap \exists R .(\forall S . D)$
g) $A \equiv B \sqcup \emptyset$

ANSWER:

a, c, d, e, f

Unfolding a Concept

Unfold ColouredGuitar:

ElectricGuitar ミ Guitar п \forall hasSoundAmplification.withInputJack
ColouredGuitar \equiv ElectricGuitar $п$ ヨhasColour.String

Answer:

ColouredGuitar \equiv Guitar $\sqcap \forall$ hasSoundAmplification.withInputJack $п \exists$ gasColour.String

Cyclic and acyclic TBOX

```
Is the following TBOX cyclic?
Woman \equiv Person п Female
Man \equiv Person п \negWoman
Mother \equiv Woman }\sqcap\exists\exists\mathrm{ GasChild.Person
Father \equiv Man п \existshasChild.Person
Parent \equiv Father ப Mother
```


ANSWER:

No, because by unfolding all concepts I never obtain the same concept on the left and on the right of the equivalences.

Cyclic and acyclic TBOX

Is the following TBOX cyclic?

Male $\equiv \neg$ Female
Female $\equiv-$ Male

ANSWER:

Yes, because by unfolding it I get Female $\equiv \neg(\neg$ Female $)$ that is Female \equiv Female

Terminology

Is the following TBOX a terminology?
Mother \equiv Woman $\sqcap \exists$ hasChild.Person
Father \equiv Man $\sqcap \exists$ hasChild.Person
Parent \equiv Father \sqcup Mother

ANSWER:

Yes, because it is acyclic and there are only equivalences.

Terminology

Is the following TBOX a terminology?
Mother \equiv Woman $\sqcap \exists$ hasChild.Person
Father \equiv Man $\sqcap \exists$ hasChild.Person
Parent ㄷ Father \sqcup Mother

ANSWER:

No, because it contains a subsumption.

Creating a terminology by expansion

```
Given the previous TBOX, provided below, can I convert it to make it a terminology?
Mother \equiv Woman п \existshasChild.Person
Father \equivMan П \existshasChild.Person
Parent ᄃ Father \sqcup Mother
```


ANSWER:

Yes, for instance as follows:
Mother \equiv Woman $\sqcap \exists$ hasChild.Person
Father \equiv Man $\sqcap \exists$ hasChild.Person
StepMother ミ Woman $\sqcap \exists$ marriedWith.Father
StepFather \equiv Man $\sqcap \exists$ marriedWith.Mother
Parent \equiv Father \sqcup Mother \sqcup StepFather \sqcup StepMother

Defining a terminology from natural language definitions

A lion is a large gregarious predatory feline of Africa and India having a shaggy mane in the male Lion \equiv Feline \sqcap Large \sqcap Gregarious \sqcap Predatory $\sqcap \forall$ livesIn.(Africa \sqcup India) $\sqcap \exists$ livesIn.(Africa \sqcup India) MaleLion \equiv Lion \sqcap Male $\sqcap \forall$ has.ShaggyMane $\sqcap \exists$ has.ShaggyMane

A penguin is a flightless bird of Antarctica having webbed feet

Penguin \equiv Bird $\sqcap \neg$ Fly $\sqcap \forall$ livesIn.Antarctica $\sqcap \exists$ livesIn.Antarctica $\sqcap \forall$ has.WebbedFeet $\sqcap \exists$ has.WebbedFeet

Defining a terminology from a schema

Thing $>$ Event
Property Expected Type Properties from Event Thing about Person actor Organization or Person attendee

ANSWER. By assuming the schema as complete (otherwise it is not a terminology) we have:

```
Event \equivThing п
    \forallabout.Thing }\sqcap\exists\existsabout.Thing п
```



```
    \forallattendee.(Person \sqcup Organization) }\sqcap\exists\mathrm{ `attendee.(Person ப Organization)
```


Logical consequences of a terminology (by unfolding)

Given the previous TBOX, replicated on the right, which of the following are logical consequences of the TBOX?
a) Event $\sqsubseteq \forall$ about.Thing $\sqcap \exists$ about.Thing
b) Event ㄷ \forall about.Thing
c) Event $\sqsubseteq \exists$ about.Thing
d) Event $\equiv \forall$ about.Thing $\sqcap \exists$ about.Thing
e) Event $\sqsubseteq \forall$ attendee.Person $\sqcup \forall$ attendee.Organization
f) Event 드 \forall attendee.Person
g) Person $\sqsubseteq \neg$ Organization

ANSWER.
a, b, c, f

TBOX

Event ミ Thing
$\sqcap \forall$ about.Thing $\sqcap \exists$ about.Thing
$\sqcap \forall$ actor.Person $\sqcap \exists$ actor.Person \sqcap
\forall attendee.(Person \sqcup Organization) \sqcap
ヨattendee.(Person \sqcup Organization)

Formalizing a lexicon as a terminology (I)

Vehicle \equiv Conveyance $\sqcap \exists$ transports.(Person \sqcup Object) $\sqcap \forall$ transports.(Person \sqcup Object) Car \equiv Vehicle $\sqcap \neg$ Bicycle $\sqcap \exists$ hasPart. Wheel Π ヨhasPart.Engine
Bicycle \equiv Vehicle $\sqcap \exists$ hasPart.Wheel $\sqcap \exists$ hasPart.FootPedal $\sqcap \exists$ movedBy.FootPedal $\sqcap \forall$ movedBy.FootPedal Wheel \equiv Object \cap CircularShape Π ヨmoves.Vehicle $\sqcap \forall$ moves.Vehicle

Reasoning in LOD

Suppose we model the Monkey-Banana

 problem as follows:"If the monkey is low in position then it cannot get the banana. If the monkey gets the banana it survives".

Theory T:
MonkeyLow $\subseteq \neg$ GetBanana GetBanana ᄃ Survive

ANSWER: Yes. It is enough to find one model for it, represented graphically with the Venn Diagram below.

Is T satisfiasble?

Reasoning in LOD

Suppose we model the Monkey-Banana

 problem as follows:"If the monkey is low in position then it cannot get the banana. If the monkey gets the banana it survives".

Theory T:
MonkeyLow $\sqsubseteq \neg$ GetBanana GetBanana ᄃ Survive

Is it possible for a monkey to survive even if it does not get the banana?

ANSWER: We can restate the problem as follow: does $T \vDash \neg$ GetBanana $п$ Survive at least in one model?
Yes. We can find a model in which both all the assertions in T and \neg GetBanana $п$ Survive are not empty.

Reasoning in LOD

Suppose we describe students in a course as follows:

ANSWER: We can restate the problem as follow: does $T \vDash$ Assistant \subseteq Undergraduate ?

Undergraduate	$\sqsubseteq \neg$ Teach
Bachelor	\equiv Student \sqcap Undergraduate
Master	\equiv Student $\sqcap \neg$ Undergraduate
PhD	\equiv Master \sqcap Research
Assistant	\equiv PhD \sqcap Teach

Are all assistants also undergraduates?
We need to prove that this is true in all models (via the method of unfolding)

Assistant \equiv PhD $п$ Teach三 Master $п$ Research $п$ Teach
\equiv Student $\sqcap \neg$ Undergraduate $п$ Research \square Teach
Answer is No. Assistants are actually students who are not undergraduate.

Reasoning in LOD

Suppose we model the Monkey-Banana

 problem as follows:"If the monkey is low in position then it cannot get the banana. If the monkey gets the banana it survives".

Theory T:
MonkeyLow $\equiv \neg$ GetBanana $\sqcap \neg$ ClimbBox GetBanana ミ Survive

Is it possible for a monkey to climb the box and not survive?

ANSWER: We can restate the problem as follow: does $T \vDash$ ClimbBox $\sqcap \neg$ Survive at least in one model?
Yes. We can find a model in which both all the assertions in T and ClimbBox $\sqcap \neg$ Survive are not empty.

Reasoning in LOD

Suppose we describe students in a course as follows:
 ``` Undergraduate ᄃ\negTeach
 Bachelor \equivStudent п Undergraduate
 Master \equivStudent

\square\neg\mathrm{ Undergraduate
 PhD \equiv Master ח Research
 Assistant \equivPhD п Teach```}

Are bachelor and master disjoint?

ANSWER: We can restate the problem as follow: does T \(\vDash\) Bachelor \(\sqcap\) Master \(\sqsubseteq \perp\) ?

We need to prove that this is true in all models (via the method of unfolding)

Answer is obviously Yes because they contain two opposite constraints.

\section*{Define a LODE theory}

\section*{Define a LODE theory for the following knowledge graph}

\section*{ANSWER:}

\section*{Person \(\subseteq \exists\) Drives.Car \(\sqcap\) \(\exists\) HasHobby.SportCar \(\square\) ヨHasHobby.Opera \\ Student 드 Person \\ SportCar \(\subseteq\) Car}

Student(Ralf)
Opera(DonCarlos)

\section*{Define a LODE theory}

\section*{Define a LODE theory for the following problem:}

In a hospital patients, doctors and computers are equipped with proximity sensors able to detect whether doctors curated a patient or worked at their computer. The system detected that doctor Peter curated the patient Smith.

\section*{ANSWER:}

Doctor \(\subseteq \forall\) cure.Patient \(\Pi \forall\) work.Computer
cure \(\subseteq\) detected
work \(\subseteq\) detected

Doctor (Peter) Patient (Smith) cure(Peter, Smith)

\section*{Expansion of a LODE concept}

Given the following TBOX，compute the expansion of the ABox A＝\｛StepMother（Mary）\}
Mother ミ Woman \(п \exists\) hasChild．Person
Father ミ Man \(\square\) ヨhasChild．Person
StepMother \(\equiv\) Woman \(п \exists\) marriedWith．Father
StepFather ミ Man \(п \exists\) marriedWith．Mother
Parent \(\equiv\) Father \(\sqcup\) Mother \(\sqcup\) StepFather \(\sqcup\) StepMother

\section*{ANSWER：}

StepMother（Mary），Woman（Mary），marriedWith（Mary，a1），Father（a1）
Man（a1），hasChild（a1，a2），Person（a2）

\section*{Expansion of a LODE concept}
```

Given the following TBOX, compute the expansion of the ABox A = {StepMother(Mary),
marriedWith(Mary, Paul)}
Mother \equiv Woman п \existshasChild.Person
Father \equiv Man п \existshasChild.Person
StepMother \equiv Woman п \forallmarriedWith.Father
StepFather \equiv Man п \existsmarriedWith.Mother
Parent \equiv Father ப Mother ப StepFather ப StepMother

```

\section*{ANSWER:}

StepMother(Mary), Woman(Mary), marriedWith(Mary, Paul), Father(Paul)
Man(Paul), hasChild(Paul, a1), Person(a1)

\section*{Instance checking in LODE}

Given the following LODE theory T, does T |= Professor(John)?
Lecturer \(\equiv \forall\) Teaches.Course \(\sqcap \neg\) Undergrad \(\sqcap\) Professor
Lecturer (John)
Teaches(John, Logics)
Course(Logics)

\section*{ANSWER:}

The expansion of Lecturer (John) is \{Teaches(John, Logics), Course(Logics), „Undergrad(John), Professor(John)\}
Therefore the answer is yes.

\section*{Instance retrieval in LODE}

\section*{Given the following LODE theory T, find all the instances of Lecturer.}

Lecturer \(\equiv \forall\) Teaches.Course \(\sqcap \neg\) Undergrad \(\sqcap\) Professor
Lecturer (John)
Teaches(John, Logics)
Course(Logics)
Teaches(Paul, Logics)
\(\neg\) Undergrad(Paul)
Professor(Paul)

\section*{ANSWER:}
\{John, Paul\}
In fact, John is in the ABox, while Paul satisfies all the constraints in the definition of Lecturer.

\section*{Concept realization in LODE}

Given the following LODE theory T, find the most specific concept for Paul.
Lecturer \(\equiv \forall\) Teaches.Course \(\sqcap \neg\) Undergrad \(\sqcap\) Professor
Lecturer (John)
Teaches(John, Logics)
Course(Logics)
Teaches(Paul, Logics)
\(\neg\) Undergrad(Paul)
Professor(Paul)

\section*{ANSWER:}

Given that Paul satisfies all the constraints in the definition of Lecturer, the answer is Lecturer. Note that if we remove Professor(Paul), the answer becomes \{ \(\neg\) Undergrad\}```

