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Chapter 1
The DPLL LOP decision procedure

1.1 Introduction

DPLL (for Davis-Putnam-Logemann-Loveland) is the de-facto reference standard
for the implementation of SAT-based reasoning. It implements satisfiability of a
specific subclass of LOP , the so called Conjunctive Normal Form (CNF).
The standard approach to using DPLL is as follows:
1. The input problem, if different from satisfiabiliy, namely if validity, unsatisfi-

ability, logical consequence or logical equivalence, must be translated into a
satisfiability problem.

2. The resulting input formula is translated into CNF.
3. DPLL is run on the CNF formula.

1.2 Conjunctive Normal Form (CNF)

1.2.1 Definitions

Definition 1.1 (Literal) A literal is either a propositional variable or the negation of
a propositional variable.

Example 1.1 (Literal) Two examples or literls are: 𝑝,¬𝑞.

Definition 1.2 (Clause) A clause is a disjunction of literals,

Example 1.2 (Clause) An example of clause id (𝑝 ∨ ¬𝑞 ∨ 𝑟).
Definition 1.3 (Conjunctive normal form (CNF)) A formula is in conjunctive
normal form, if it is a conjunction of clauses,

Example 1.3 (CNF formulas) An example of CNF formula is the following

(𝑝 ∨ ¬𝑞 ∨ 𝑟) ∧ (𝑞 ∨ 𝑟) ∧ (¬𝑝 ∨ ¬𝑞) ∧ 𝑟

1



2 1 The DPLL LOP decision procedure

Example 1.4 (CNF formulas, special cases)

• {}
• 𝑝

• ¬𝑝
• 𝑝 ∧ 𝑞 ∧ 𝑟
• 𝑝 ∨ 𝑞 ∨ 𝑟

Definition 1.4 A CNF formula has the following shape:(
𝐿 (1,1) ∨ . . . ∨ 𝐿 (1,𝑛1 )

)
∧ . . . ∧

(
𝐿 (𝑚,1) ∨ . . . ∨ 𝐿 (𝑚,𝑛𝑚 )

)
equivalently written as:

𝑚∧
𝑖=1

©«
𝑛 𝑗∨
𝑗=1

𝐿𝑖 𝑗
ª®¬

where 𝐿𝑖 𝑗 is the 𝑗-th literal of the 𝑖-th clause

Proposition 1.1 (Existence) Every formula can be rewritten into Conjunctive Nor-
mal Form.

Proposition 1.2 (Equivalence) |= 𝐶𝑁𝐹 (𝜙) ≡ 𝜙

1.2.2 Properties of CNF formulas

Proposition 1.3 (Order of literals does not matter) If a clause is obtained by
reordering the literals of a clause then the two clauses are equivalent.

Example 1.5 (Order of literals does not matter)

(𝑝 ∨ 𝑞 ∨ 𝑟 ∨ ¬𝑟) ≡ (¬𝑟 ∨ 𝑞 ∨ 𝑝 ∨ 𝑟)

Observation 1.1 (Order of literals does not matter) The order of literals does not
matter as a consequence of the commutativity of disjunction.

𝜙 ∨ 𝜓 ≡ 𝜓 ∨ 𝜙

Proposition 1.4 (Multiple literals can be merged) If a clause contains more than
one occurrence of the same literal then it is equivalent to the clause obtained by
deleting all but one of these occurrences.

Example 1.6 (Multiple literals can be merged)

(𝑝 ∨ 𝑞 ∨ 𝑟 ∨ 𝑞 ∨ ¬𝑟) ≡ (𝑝 ∨ 𝑞 ∨ 𝑟 ∨ ¬𝑟)
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Observation 1.2 (Multiple literals can be merged) Literals can be merged because
of the property of absorption of disjunction.

𝜙 ∨ 𝜙 ≡ 𝜙

Observation 1.3 (Clauses as sets of literals) We can represent a clause as a set
of literals, by leaving disjunction implicit and by ignoring replication and order of
literals.

Example 1.7 (Clauses as sets of literals)

(𝑝 ∨ 𝑞 ∨ 𝑟 ∨ ¬𝑟)

is represented by the set
{𝑝, 𝑞, 𝑟,¬𝑟}

Observation 1.4 (Clauses as sets of literals) This type of representation if a proxy
for the complex data structures (e.g., multi-dimensional vectors) used to implements
formulas in DPLL.

Proposition 1.5 (Order of clauses does not matter) : If a CNF formula 𝜙′ is
obtained by reordering the clauses of a CNF formula 𝜙′ then 𝜙 and 𝜙′ are equivalent.

Example 1.8 (Order of clauses does not matter)

(𝑝 ∨ 𝑞) ∧ (𝑟 ∨ ¬𝑞) ∧ (¬𝑞) ≡ (𝑟 ∨ ¬𝑞) ∧ (¬𝑞) ∧ (𝑝 ∨ 𝑞)

Observation 1.5 (Order of clauses does not matter) The order of clauses does not
matter as a consequence of the commutativity of conjunction.

𝜙 ∧ 𝜓 ≡ 𝜓 ∧ 𝜙

Proposition 1.6 (Multiple clauses can be merged) If a CNF formula contains more
than one occurrence of the same clause then it is equivalent to the formula obtained
by deleting all but one of the duplicated occurrences

Example 1.9 (Multiple clauses can be merged)

(𝑝 ∨ 𝑞) ∧ (𝑟 ∨ ¬𝑞) ∧ (𝑝 ∨ 𝑞) ≡ (𝑝 ∨ 𝑞) ∧ (𝑟 ∨ ¬𝑞)

Observation 1.6 (Multiple clauses can be merged) Multiple clauses can be merged
because of the property of absorption of conjunction.

𝜙 ∧ 𝜙 ≡ 𝜙

Observation 1.7 (CNF formulas as sets of clauses) A CNF formula can be repre-
sented as a set of sets of literals
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Example 1.10 (CNF formulas as sets of clauses)

(𝑝 ∨ 𝑞) ∧ (𝑟 ∨ ¬𝑞) ∧ (¬ ∨ 𝑞)

is represented by
{{𝑝, 𝑞}, {𝑟,¬𝑞}, {¬𝑞}}

Observation 1.8 (CNF formulas as sets of clauses) This type of representation if
a proxy for the complex data structures (e.g., multi-dimensional vectors) used to
implements formulas in DPLL, extending the notation used for clauses.

1.2.3 Generating CNF formulas

Definition 1.5 (Generation of CNF formulas) Let {𝑃} be a set of LOP proposi-
tions Given a LOP formula 𝜙 the function CNF, which transforms 𝜙 in its CNF
form, called 𝐶𝑁𝐹 (𝜙) is recursively defined as follows:

𝐶𝑁𝐹 (p) = p if p ∈ {𝑃}
𝐶𝑁𝐹 (¬p) = ¬p if p ∈ {𝑃}
𝐶𝑁𝐹 (𝜙 ⊃ 𝜓) = 𝐶𝑁𝐹 (¬𝜙) ⊗ 𝐶𝑁𝐹 (𝜓)
𝐶𝑁𝐹 (𝜙 ∧ 𝜓) = 𝐶𝑁𝐹 (𝜙) ∧𝐶𝑁𝐹 (𝜓)
𝐶𝑁𝐹 (𝜙 ∨ 𝜓) = 𝐶𝑁𝐹 (𝜙) ⊗ 𝐶𝑁𝐹 (𝜓)
𝐶𝑁𝐹 (𝜙 ≡ 𝜓) = 𝐶𝑁𝐹 (𝜙 ⊃ 𝜓) ∧𝐶𝑁𝐹 (𝜓 ⊃ 𝜙)
𝐶𝑁𝐹 (¬¬𝜙) = 𝐶𝑁𝐹 (𝜙)
𝐶𝑁𝐹 (¬(𝜙 ⊃ 𝜓) ) = 𝐶𝑁𝐹 (𝜙) ∧𝐶𝑁𝐹 (¬𝜓)
𝐶𝑁𝐹 (¬(𝜙 ∧ 𝜓) ) = 𝐶𝑁𝐹 (¬𝜙) ⊗ 𝐶𝑁𝐹 (¬𝜓)
𝐶𝑁𝐹 (¬(𝜙 ∨ 𝜓) ) = 𝐶𝑁𝐹 (¬𝜙) ∧𝐶𝑁𝐹 (¬𝜓)
𝐶𝑁𝐹 (¬(𝜙 ≡ 𝜓) ) = 𝐶𝑁𝐹 (𝜙 ∧ ¬𝜓) ⊗ 𝐶𝑁𝐹 (𝜓 ∧ ¬𝜙)

The computation of 𝐶𝑁𝐹 (𝜙) is terminated when we reach a formula with the
following shape

(𝐶1 ∧ . . . ∧ 𝐶𝑛) ⊗ (𝐷1 ∧ . . . ∧ 𝐷𝑚) (1.1)

where 𝐶𝑖 is a conjunction of literals (possibly a single literal) and 𝐷 𝑗 is a disjunc-
tion of literals (possibly a single literal). At this point the above formulas can be
substituted, respectively with the following formulas:

(𝐶1 ∨ 𝐷1) ∧ . . . ∧ (𝐶1 ∨ 𝐷𝑚) ∧ . . . ∧ (𝐶𝑛 ∨ 𝐷1) ∧ . . . ∧ (𝐶𝑛 ∨ 𝐷𝑚)

Observation 1.9 (Generation of CNF formulas) The algorithm above has the fol-
lowing behaviour:

• when it encounters a literal, it leaves it as it is;
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• when in encouters a conjunction, it leaves it as it is;
• when it encounters a disjunction, it substitutes ∨ with ⊗;
• It terminates the process when it encounters a literal thus terminating with a

formula which, in the most general case has the shape in (1.1).

We have various special cases:

• The set of conjuncts 𝐶𝑖 is empty. In which case the process is terminated as the
formula already a CNF formula

• The set of disjuncts 𝐷𝑖 is empty. In which case the process is terminated as the
formula already a CNF formula, being in fact a single clause.

• One or more disjuncts are actually single literals thus reducing the formula on the
left of ⊗ to a conjunction

Observation 1.10 (Generation of CNF formulas, special cases.) Consider the ex-
pression

(𝐶1 ∧ . . . ∧ 𝐶𝑛) ⊗ (𝐷1 ∧ . . . ∧ 𝐷𝑚)

as form Definition 1.5. Asssuming that the two sets fo conjuntcs and disjuncts are
not empty, we have the following special cases (𝑝, 𝑞, 𝑟, 𝑠 are propositions):

𝑞 ⊗ 𝑝 = 𝑞 ∨ 𝑝

(𝑞 ∧ 𝑟 ) ⊗ 𝑝 = (𝑞 ∨ 𝑝) ∧ (𝑟 ∨ 𝑝)
𝑝 ⊗ (𝑞 ∧ 𝑟 ) = (𝑞 ∨ 𝑝) ∧ (𝑟 ∨ 𝑝)
(𝑞 ∨ 𝑟 ) ⊗ 𝑝 = (𝑞 ∨ 𝑟 ∨ 𝑝)
𝑝 ⊗ (𝑞 ∨ 𝑟 ) = (𝑞 ∨ 𝑟 ∨ 𝑝)
(𝑞 ∧ 𝑟 ) ⊗ (𝑝 ∨ 𝑠) = (𝑞 ∨ 𝑝 ∨ 𝑠) ∧ (𝑟 ∨ 𝑝 ∨ 𝑠)

Notice that ⊗ is commutative.

Example 1.11 (CNF transformation) . Compute the CNF of

(𝑎 ∧ 𝑏) ∨ (𝑐 ⊃ 𝑑)

We proceed as follows:

𝐶𝑁𝐹 ((𝑎 ∧ 𝑏) ∨ (𝑐 ⊃ 𝑑)) =
𝐶𝑁𝐹 (𝑎 ∧ 𝑏) ⊗ 𝐶𝑁𝐹 (𝑐 ⊃ 𝑑) =

(𝐶𝑁𝐹 (𝑎) ∧ 𝐶𝑁𝐹 (𝑏)) ⊗ (𝐶𝑁𝐹 (¬𝑐) ⊗ 𝐶𝑁𝐹 (𝑑)) =
(𝑎 ∧ 𝑏) ⊗ (¬𝑐 ⊗ 𝑑) =
(𝑎 ∧ 𝑏) ⊗ (¬𝑐 ∨ 𝑑) =

(𝑎 ∨ ¬𝑐 ∨ 𝑑) ∧ (𝑏 ∨ ¬𝑐 ∨ 𝑑) =

Example 1.12 (CNF transformation) . Compute the CNF of
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(𝑎 ∧ 𝑏) ∨ ¬(𝑐 ⊃ 𝑑)

We proceed as follows:

𝐶𝑁𝐹 ((𝑎 ∧ 𝑏) ∨ ¬(𝑐 ⊃ 𝑑)) =
𝐶𝑁𝐹 (𝑎 ∧ 𝑏) ⊗ 𝐶𝑁𝐹 (¬(𝑐 ⊃ 𝑑)) =

(𝐶𝑁𝐹 (𝑎) ∧ 𝐶𝑁𝐹 (𝑏)) ⊗ (𝐶𝑁𝐹 (𝑐) ∧ 𝐶𝑁𝐹 (¬𝑑)) =
(𝑎 ∧ 𝑏) ⊗ (𝑐 ∧ ¬𝑑) =

(𝑎 ∨ 𝑐) ∧ (𝑎 ∨ ¬𝑑) ∧ (𝑏 ∨ 𝑐) ∧ (𝑏 ∨ ¬𝑑) =

Example 1.13 (CNF transformation, exponential explosion) . Compute the CNF of
the following formula

𝑝1 ≡ (𝑝2 ≡ (𝑝3 ≡ (𝑝4 ≡ (𝑝5 ≡ 𝑝6))))

We proceed as from above. The formula resulting from the first step is:

𝐶𝑁𝐹 (𝑝1 ⊃ (𝑝2 ≡ (𝑝3 ≡ (𝑝4 ≡ (𝑝5 ≡ 𝑝6)))))
∧

𝐶𝑁𝐹 ((𝑝2 ≡ (𝑝3 ≡ (𝑝4(𝑝5 ≡ 𝑝6)))) ⊃ 𝑝1)

Notice that in the above expansion the formulas has doubles its size. Continuing in
the expansion the formula will keep growing exponentially.

Observation 1.11 (Cost of generation of a CNF formulas) In the worst case the
formula𝐶𝑁𝐹 (𝜙) is exponentially longer than 𝜙 (construct a formula where this is the
case using only conjunction, disjunction and negation). The exponential explosion
can be limited into a polinomial growth, by preserving satisfiability but not validity.
The price is the introduction of new variables.

1.3 Satisfiability of a CNF formula

Proposition 1.7 (Satisfiability of a set of clauses) Let 𝐶𝑁𝐹 (𝜙) = {𝐶0, . . . , 𝐶𝑛},
where 𝐶0, . . . 𝐶𝑛 are clauses. Then we have the following:

• I |= 𝜙, if and only if I |= 𝐶𝑖 for all 𝑖 = 0, . . . , 𝑛;
• I |= 𝐶𝑖 , if and only if for some literal 𝑙 ∈ 𝐶𝑖 , I |= 𝑙.

Observation 1.12 (Partial assignment) To check if a model satisfies 𝜙 we do not
need to know the truth of all the literals appearing in 𝜙. For instance, if 𝐼 (𝑝) = True
and 𝐼 (𝑞) = False, we can say that

I |= {{𝑝, 𝑞,¬𝑟}, {¬𝑞, 𝑠}}
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is satisfiable.

Definition 1.6 (Partial evaluation) A partial evaluation is a partial function that
associates to some propositional variables of the alphabet {𝑃} a truth value (either
True or False) and can be undefined for the other elements of {𝑃}.

Observation 1.13 (Partial evaluation) Under a partial evaluation I, the literals and
clauses can be true, false or undefined. We have the following:

• A clause is true under I if at least one of its literals is true;
• A clause is false (or conflicting) under I if all literals are false;
• In all the other cases, a clause 𝐶 is undefined (or unresolved).

Within a (partial or full) evaluation, a clause is left undefined when the truth value
of its literals is irrelevant to the computation of the current interpretation I.

Definition 1.7 ((Formula simplification by positive literal)) For any CNF formula
𝜙 and atom 𝑝, 𝜙|𝑝 stands for the formula obtained from 𝜙 by

• replacing all occurrences of 𝑝 by the truth value True (⊤ from now on) and
• by simplifying the result by removing:

– the clauses containing the disjunctive term ⊤;
– the literals ¬⊤ =⊥ (where ⊥ stands for False) in all remaining clauses.

Definition 1.8 ((Formula simplification by negative literal)) For any CNF formula
𝜙 and atom 𝑝, 𝜙|¬𝑝 stands for the formula obtained from 𝜙 by

• replacing all occurrences of 𝑝 by the truth value ⊥ and
• by simplifying the result by removing:

– the clauses containing the disjunctive term ¬ ⊥= ⊤;
– the literals ⊤ in all remaining clauses.

Example 1.14 (Simplification of a formula by an evaluated literal (example))

{{𝑝, 𝑞,¬𝑟}, {¬𝑝,¬𝑟}}|¬𝑝 = {{𝑞,¬𝑟}}

• The second clause is verified because it contains ¬𝑝 which we assume to be true
from the |¬𝑝 notation.

• The first clause which contains 𝑝 isn’t verified by assuming ¬𝑝 as ⊤, so we leave
there the clause and we try to verify it by using the remaining literals.

Proposition 1.8 (CNF satisfiability) Let CNF(𝜙) = {𝐶0, . . . 𝐶𝑛}, where 𝐶0, . . . 𝐶𝑛

are the clauses in CNF(𝜙). Let us assume that we iterate the process of literal
evaluation. Then the process will terminate with one of two possible situations:

• {}, that is, with an empty set of clauses, in which case 𝜙 is satisfiable;
• {. . . {} . . .}, that is, with a non empty set of clauses containing one empty clause,

in which case 𝜙 this unsatisfiable.
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Observation 1.14 (CNF satisfiability) The process above will terminate, indepen-
dently of the order of selection of the literals being evaluated. We have two possible
outcomes.

• The first situation arises when, within CNF(𝜙), all the clauses have been progres-
sively eliminated because of multiple occurrences of ⊤;

• The second situation arises when, within one clause in CNF(𝜙), all the literals
have been progressively eliminated because of multiple occurrences of ⊥.

Example 1.15 (CNF satisfiability) Check the satisfiability of the following formula

(¬𝑝 ∨ 𝑞) ∧ (¬𝑟 ∨ 𝑞)

1. (¬𝑝 ∨ 𝑞) ∧ (¬𝑟 ∨ 𝑞)
2. {{¬𝑝, 𝑞}, {¬𝑟, 𝑞}}
3. {{¬𝑝,⊤}, {¬𝑟,⊤}}|𝑞
4. {}

1.4 Normal forms

Definition 1.9 (Disjunctive Normal Form (DNF) A formula in Disjunctive Normal
Form (DNF) is a disjunction of conjunctions of literals.

Example 1.16 (DNF formulas) An example of CNF formula is the following

(𝑝 ∧ ¬𝑞 ∧ 𝑟) ∨ (𝑞 ∧ 𝑟) ∨ (¬𝑝 ∧ ¬𝑞) ∨ 𝑟

Example 1.17 (DNF formulas, special cases)

• {}
• 𝑝

• ¬𝑝
• 𝑝 ∧ 𝑞 ∧ 𝑟
• 𝑝 ∨ 𝑞 ∨ 𝑟
Note how CNF formulas and DNF formulas has exactly the same special cases. Of
course the process by which they get constructed is different, somehow opposite

Definition 1.10 (Disjunctive Normal Form) A DNF formula has the following
shape: (

𝐿 (1,1) ∧ . . . ∧ 𝐿 (1,𝑛1 )
)
∨ . . . ∨

(
𝐿 (𝑚,1) ∧ . . . ∧ 𝐿 (𝑚,𝑛𝑚 )

)
equivalently written as:

𝑚∨
𝑖=1

©«
𝑛 𝑗∧
𝑗=1

𝐿𝑖 𝑗
ª®¬

where 𝐿𝑖 𝑗 is the 𝑗-th literal of the 𝑖-th clause
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Proposition 1.9 (Existence) Every formula can be rewritten into Disjunctive Normal
Form.

Proposition 1.10 (Equivalence) |= 𝐷𝑁𝐹 (𝜙) ≡ 𝜙

Observation 1.15 (Simmetry of DNF and CNF) All the steps above for CNF apply
to DNF simply switching the roles of conjunction and disjunction: This applies also
the process of generation of CNF/DNF formulas. Check it by yourself.

Proposition 1.11 (Length of DNF formulas) Similarly to CNF formulas, the gen-
eration of a DNF formula from a LOP formula can generate a generate an expo-
nentially long formula.

Definition 1.11 (Negation Normal Form (NNF) A formula is in Negation Normal
Form (NNF) if negation applies only to propositions

Proposition 1.12 (Existence) Every formula can be rewritten into Negation Normal
Form.

Proposition 1.13 (Equivalence) |= 𝑁𝑁𝐹 (𝜙) ≡ 𝜙

Observation 1.16 (CNF, DNF, NNF) CNF formulas and DNF formulas are also
NNF formulas

Definition 1.12 (Canonical form) A class of formulas has a canonical form if the
process of reducing a LOP formula into a formula of that class generates a single
formula, so-called in canonical form.

Proposition 1.14 (Canonical form of CNF, DNF, NNF) CNF formulas and DNF
formulas have a canonical form. NNF formulas do not have a canonical forms. For
example,

𝑎 ∧ (𝑏 ∨ ¬𝑐)

and
(𝑎 ∧ 𝑏) ∨ (𝑎 ∧ ¬𝑐)

are equivalent, and they are both in negation normal form.

Proposition 1.15 (Complexity of satisfiability of a CNF formula) Computing the
satisfiability of a CNF formula has a worst case which is exponential.

Observation 1.17 (Complexity of satisfiability of a CNF formula) As shown
above, the algorithm must find the truth assignment which makes all clauses True.
The problem is the mutual influence across clauses where the same literal may occur
positive in one clause and negative in another.

Proposition 1.16 (Complexity of validity of a CNF formula) Computing the va-
lidity of a CNF formula can be done in polynomial time.
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Observation 1.18 (Complexity of validity of a CNF formula) All the clauses must
be true, independently of the specific assignment. The only situation which makes it
possible is when, in all the clauses, there is a literal, not necessarily the same which
appears both positive and negative

Proposition 1.17 (Complexity of satisfiability of a DNF formula) Computing the
satisfiability of a DNF formula can be done in polynomial time.

Observation 1.19 (Complexity of satisfiability of a DNF formula) For a DNF
formula to be satisfiable, being it a disjunction, it is sufficient to find an assignment
which makes true one of the many conjunctive clauses which appear in the disjunc-
tion. This is always possible unless, in all conjuncts, the conjunction of a formula
and its negation appears, not necessarily the same.

Proposition 1.18 (Complexity of validity of a DNF formula) Computing the va-
lidity of a DNF formula has a worst case which is exponential.

Observation 1.20 (Complexity of validity of a DNF formula) A DNF formula is
a disjunction of conjunctions. As such, it is sufficient, for each conjunct, to find
an assignment which makes it true. This can be done in polynomial time. The
exponential worst case generates from the fact that this test must be done for all
possible interpretations.

1.5 The DPLL decision procedure

Definition 1.13 (Unit clause) If a CNF formula 𝜙 contains a clause 𝐶 = {𝑙} that
consists of a single literal 𝑙, it is a unit clause.

Observation 1.21 (Satisfiability of the Unit Clause) A formula 𝜙 containing a unit
clause {𝑙}

• is satisfiable only if 𝑙 is evaluated as ⊤.
• can be simplified by appyling the rules above for 𝑙.

Definition 1.14 (Simplification of a formula by unit propagation) We have the
following pseudo-code

while 𝜙 contains a unit clause {𝑙} do
𝜙 = 𝜙 |𝑙
if 𝑙 = 𝑝, then I (𝑝) = ⊤
if 𝑙 = ¬𝑝, then I (𝑝) = ⊥

end
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Example 1.18 (Unit propagation) Consider the following CNF formula

𝜙 = {{𝑝}, {¬𝑝,¬𝑞}, {¬𝑞, 𝑟}}

Check whether 𝜙 is satisfiable by unit propagation. If so, find an interpretation I so
that I |= 𝜙.

{{𝑝}, {¬𝑝,¬𝑞}, {¬𝑞, 𝑟}}
{{𝑝}, {¬𝑝,¬𝑞}, {¬𝑞, 𝑟}}|𝑝
{{⊤}, {⊥,¬𝑞}, {¬𝑞, 𝑟}}
{{¬𝑞}, {¬𝑞, 𝑟}}
{{¬𝑞}, {¬𝑞, 𝑟}}|¬𝑞
{{⊤}, {⊤, 𝑟}}
{}

𝜙 is satisfiable, and I = {𝑝,¬𝑞}. The literal 𝑟 is left undefined, because in order
to satisfy the formula there is no need to evaluate it. This is an example of partial
evaluation.

Example 1.19 (Unit propagation) Consider the following CNF formula

𝜙 = {{𝑝}, {¬𝑝}, {¬𝑞, 𝑟}}

Check whether 𝜙 is satisfiable by unit propagation. If so, find an interpretation I so
that I |= 𝜙.

{{𝑝}, {¬𝑝}, {¬𝑞, 𝑟}}
{{𝑝}, {¬𝑝,¬𝑞}, {¬𝑞, 𝑟}}|𝑝
{{⊤}, {⊥}, {¬𝑞, 𝑟}}
{{}, {¬𝑞, 𝑟}}
{. . . , {}, . . . }

The second clause is not satisfiable, and thus the entire formula is not satisfiable (no
other options can be tried as we have failed in the assignment of a unit clause).

Observation 1.22 (Beyond Unit propagation) There are cases in which Unit Prop-
agation does not generate one of the two termination conditions. In this case, we
have to guess and assign truth values of literals. In general, but not necessarily, each
unassigned literal will generate a branch of two cases, one for each truth value. Each
branch may double the number of interpretation functions to be analyzed. This is
where the exponential explosion arises.

Example 1.20 (Unit propagation non-termination) Consider the following formula

{{𝑝, 𝑞}, {¬𝑞, 𝑟}}

There are no unit clauses. We need to check the truth values of the unassigned literals.

Definition 1.15 (The DPLL decision procedure - First version)
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DPLL(𝜙, I)
if 𝜙 = {. . . , {}, . . . } then

return False
end
if 𝜙 = {} then

return I;
end
select literal 𝑙 ∈ 𝐶𝑖 ∈ 𝜙
DPLL

(
𝜙|𝑙 , 𝐼 ∪ (I (𝑙) = True )) or DPLL

(
𝜙|¬𝑙 , I ∪ (I (𝑙) = False ))

Observation 1.23 (The DPLL decision procedure - Start) At the beginning of the
process, DPLL is called with I = {}, namely with an empty set of assignments.
Observation 1.24 (The DPLL decision procedure - Branching) In the last line
of DPLL the or means a branching of DPLL, where each branch will look for a
different interpretation function.
Observation 1.25 (The DPLL decision procedure - Literal selection) The selec-
tion of the literal in the line before the last, in heuristic in the sense that there is
no guarantee that it will generate the assignment which will converge to a solution
faster. Notice that there are two steps in the decision:
1. selection of the literal;
2. selection of which of the truth values for the selected literal should be tried first.
Observation 1.26 (The DPLL decision procedure - Backtracking) In case of a
wrong decision, namely of an assignment which produces an interpretation function
I for which 𝜙 is not True, then DPLL needs to bakctrack to the (usually closest,
modulo advanced algorithm) decision point (see previous observation.
Example 1.21 (Backtracking) Consider the following formula

(𝑝 ∨ ¬𝑞) ∧ (𝑝 ∨ 𝑟) ∧ (¬𝑝)

The search for an assignment can be represented by the following tree:

𝑝

𝑞

× 𝑟

× ×

𝑞

× 𝑟

𝑠𝑎𝑡

𝑇

𝑇 𝐹

𝑇 𝐹

𝐹

𝑇 𝐹

𝑇
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Notice that, thanks to Unit Propagation, the branch with 𝑝 = x will not be tried, and
the same for the branch 𝑞 =⊥.

Observation 1.27 (Unit Clause heuristic) The Unit clause heuristic is guaranteed
to save time as the evaluation which is dropped is guaranteed to fail.

Example 1.22 (Computational efficiency of the Unit Clause heuristic) Consider the
following examples

1. ((𝑝 ⊃ 𝑞) ⊃ 𝑟) ∧ 𝑝 ∧ ¬𝑞
2. ((𝑝 ∧ 𝑞) ∨ ¬𝑝) ⊃ 𝑟

3. (𝑝 ∧ 𝑟) ∨ (¬𝑞 ∧ 𝑝) ∨ (¬𝑟 ∧ ¬𝑝)

Execute DPLL with and without optimizations. Then, compute how much iterations
you saved.

Observation 1.28 (Pure Literal heuristic) When a literal occurs with the same
polarity in all clauses, then this heuristic suggests to try only one value: positive if
the literal occurs positively, negative if the literal occurs negatively. Notice that the
evaluation could succeed also with the assignment which is not considered. However:

• the complexity if the same or higher;
• the interpretation function is the same or less partial (that is with a smaller number

of models)

Example 1.23 (Pure Literal heuristic) Consider the following examples

1. (𝑝 ⊃ 𝑞 ⊃ 𝑟) ∧ 𝑝 ∧ 𝑞

2. (𝑝 ∧ 𝑞)∨ ⊃ 𝑟 ∧ (𝑝 ⊃ 𝑟)
3. (𝑝 ∧ ¬𝑟) ∨ (𝑞 ∧ 𝑝) ∨ (¬𝑟 ∧ 𝑞)

Execute DPLL with and without optimizations. Then, compute how much iterations
you saved.

Observation 1.29 (Number of Occurrences heuristic) Count the occurrence of
literals and select first the ones which occur most often. You can count the total
number or the number for a given polarity. The hope is that higher number of
occurrences will lead to a higher level of simplification of the resulting formula.
However this heuristic is not guaranteed to succeed as less frequent literals could
generate faster simplifications.

Example 1.24 (Number of Occurrences heuristic) Consider the following examples

1. (𝑝 ⊃ 𝑞 ⊃ 𝑟) ∧ 𝑝 ∧ ¬𝑞
2. (𝑝 ∧ 𝑞) ∨ ¬𝑝 ⊃ 𝑟

3. (𝑝 ∧ 𝑟) ∨ (¬𝑞 ∧ 𝑝) ∨ (¬𝑟 ∧ ¬𝑝)

Execute DPLL with and without optimizations. Then, compute how much iterations
you saved.
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Definition 1.16 (The DPLL decision procedure - Final version)

Algorithm 1: DPLL(𝜙, I)

Input: A set of clauses 𝜙, an empty Interpretation Function I
Output: An Interpretation Function I
function DPLL(𝜙)

if 𝜙 = {} is empty then return I;
if 𝜙 = {. . . , {}, . . . } then return false;
while loop=T then

{loop=F;
if Unit Clause {𝑙} ∈ 𝜙 then{𝜙← unit-propagate (𝑙, 𝜙); loop= T}
if pure literal 𝑙 ∈ 𝜙 then{𝜙← pure-literal-assign (𝑙, 𝜙); loop = F}
}

I ← select-literal(𝜙);
DPLL(𝜙 ∧ {𝐼}) or DPLL(𝜙 ∧ {¬(𝐼)});

Observation 1.30 (The DPLL decision procedure - Final version) In the above
code, the heuristic counting the number of literals, like all the other heuristics, is
embedded in the code implementing select-literal.
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1.6 Exercises

1.6.1 Reduction to Negation Normal Form (NNF)

Exercise 1.1 Reduce to Negative Normal Form (NNF) the formula

¬(¬𝑝 ∨ 𝑞) ∨ (𝑟 ⊃ ¬𝑠)

Exercise 1.2 Reduce to NNF the formula

(¬𝑝 ⊃ 𝑞) ⊃ (𝑞 ⊃ ¬𝑟)

1.6.2 Reduction to Conjunctive Normal Form (CNF)

Exercise 1.3 Reduce to Conjunctive Normal Form (CNF) the formula

¬(¬𝑝 ∨ 𝑞) ∨ (𝑟 ⊃ ¬𝑠)

Exercise 1.4 Reduce to CNF the formula

(¬𝑝 ⊃ 𝑞) ⊃ (𝑞 ⊃ ¬𝑟)

Exercise 1.5 Given the WFF(well-formed-formulas) formula:

(𝐴 ⇐⇒ 𝐵) ∨ 𝐶

say which of the following WWF formulas are reformulations in CNF of the above
formula:

1. (¬𝐴 ∨ 𝐵 ∨ 𝐶) ∧ (¬𝐵 ∨ 𝐴 ∨ 𝐶)
2. (𝐶 ∨ 𝐴 ∨ ¬𝐵 ∨ 𝐶) ∧ (𝐵 ∨ ¬𝐴 ∨ 𝐶)
3. (¬𝐵 ∨ 𝐴 ∨ 𝐶) ∧ (𝐴 ∨ 𝐵 ∨ ¬𝐶)
4. (𝐵 ∨ ¬𝐴 ∨ ¬𝐶) ∧ (¬𝐵 ∨ 𝐴 ∨ 𝐶)

Exercise 1.6 Given the formula:

(¬𝐴 ∨ 𝐵 ∨ 𝐷) ∧ (𝐴 ∨ ¬𝐶) ∧ (𝐷 ∨ 𝐶)

which of the following sequences of literal assignments could be generated by DPLL?
The assignments are shown in order: then

C, D, A

means: first C, then D, then A. Choose one or more of the following:

1. D, ¬ C
2. C, A,B
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3. C,A, D
4. C, A, ¬B
5. C, B, A

Exercise 1.7 Compute the CNF of the formula below

(𝑞 ∧ 𝑝) ∨ ¬𝑝

Exercise 1.8 Compute the CNF of the formula below

(𝑝 ⊃ 𝑞) ≡ (¬𝑞 ⊃ ¬𝑝)

Exercise 1.9 Compute the CNF of the formula below

(𝑝 ∧ 𝑟) ⊃ 𝑞

Exercise 1.10 Convert a formula in CNF: (A ∨ B) ⊃ ¬A

Exercise 1.11 Convert a formula in CNF: (C ⊃ ¬A) ∧ ¬(B ∧ ¬A)

1.6.3 Check Satisfiability via CNN

Exercise 1.12 Check the satisfiability of the following formula

(¬𝑝 ∨ 𝑞) ∧ (¬𝑟 ∨ 𝑞)

Exercise 1.13 Check the satisfiability of the following formula

(𝑝∨𝑞)∧(𝑝∨¬𝑝)∧(¬𝑞∨𝑞)∧(¬𝑞∨¬𝑝)∧(¬𝑞∨¬𝑝)∧(¬𝑞∨¬𝑝)∧(¬𝑞∨𝑞)∧(𝑝∨¬𝑝)∧(𝑝∨𝑞)

Exercise 1.14 Check the satisfiability of the following formula

(𝑞 ∨ ¬𝑝) ∧ (𝑞 ∨ ¬𝑝)

Exercise 1.15 Check the satisfiability of the following formula

(𝑞 ∨ ¬𝑝) ∧ (¬𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞)

Exercise 1.16 (Unit Propagation) Consider the following CNF formula 𝜙, taking
𝜙 = {{𝑝}, {¬𝑝,¬𝑞}, {¬𝑞, 𝑟}}. Check whether 𝜙 is satisfiable by unit propagation. If
so, find an interpretation 𝐼 so that 𝐼 |= 𝜙.

Exercise 1.17 (Unit Propagation) Consider the following CNF formula

𝜙 = {{𝑝}, {¬𝑝}, {¬𝑞, 𝑟}}

is satisfiable and if so, find an interpretation / so that 𝐼 |= 𝜙.
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Exercise 1.18 (Use DPLL to prove satisfiability) Check satisfiability of: B ∧ ¬A
∧ (¬C ∨ A) ∧ (B ∨ C). In terms of clauses is: B, ¬A, ¬C, A, B, C

Exercise 1.19 (Use DPLL to prove satisfiability) Check satisfiability of: (C ⊃ A)
∧ (C ⊃ B) ∧ ¬(A ∧ B).

Exercise 1.20 (Use DPLL to prove satisfiability) Check satisfiability of the clause:
¬A, C, D, ¬B, F, D, ¬B, ¬F, ¬C, ¬D, ¬B, B, ¬C, ¬A, B, F, C, B, ¬F, ¬D, A, E, A,
F, ¬F, C, ¬E, A, ¬C, ¬E.

Exercise 1.21 (Use DPLL to prove satisfiability) By using DPLL, prove the unsat-
isfiability of (B ⊃ A) ∧ (¬A ∧ B).

Exercise 1.22 (Use DPLL to prove satisfiability) By using DPLL, prove the validity
of (A ⊃ B) ⊃ (¬B ⊃ ¬A).





Solutions

Exercises of Chapter 1

Reduction to Negative Normal Form (NNF)

Solution 1.1

1. ¬(¬𝑝 ∨ 𝑞) ∨ (¬𝑟 ∨ ¬𝑠)
2. (¬¬𝑝 ∧ ¬𝑞) ∨ (¬𝑟 ∨ ¬𝑠)
3. (𝑝 ∧ ¬𝑞) ∨ (¬𝑟 ∨ ¬𝑠)

Solution 1.2

1. ¬(¬𝑝 → 𝑞) ∨ (𝑞 → ¬𝑟)
2. ¬(𝑝 ∨ 𝑞) ∨ (¬𝑞 ∨ ¬𝑟)
3. (¬𝑝 ∧ ¬𝑞) ∨ (¬𝑞 ∨ ¬𝑟)

Reduction to Conunctive Normal Form (NNF)

Solution 1.3

1. ¬(¬𝑝 ∨ 𝑞) ∨ (¬𝑟 ∨ ¬𝑠)
2. (¬¬𝑝 ∧ ¬𝑞) ∨ (¬𝑟 ∨ ¬𝑠)
3. (𝑝 ∧ ¬𝑞) ∨ (¬𝑟 ∨ ¬𝑠) NNF
4. (𝑝 ∨ ¬𝑟 ∨ ¬𝑠) ∧ (¬𝑞 ∨ ¬𝑟 ∨ ¬𝑠)

Solution 1.4

1. ¬(¬𝑝 ⊃ 𝑞) ∨ (𝑞 ⊃ ¬𝑟)
2. ¬(𝑝 ∨ 𝑞) ∨ (¬𝑞 ∨ ¬𝑟)
3. (¬𝑝 ∧ ¬𝑞) ∨ (¬𝑞 ∨ ¬𝑟) NNF
4. (¬𝑝 ∨ ¬𝑞 ∨ ¬𝑟) ∧ (¬𝑞 ∨ ¬𝑟)

19
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Solution 1.5

• (¬𝐴 ∨ 𝐵 ∨ 𝐶) ∧ (¬𝐵 ∨ 𝐴 ∨ 𝐶)
• (𝐶 ∨ 𝐴 ∨ ¬𝐵 ∨ 𝐶) ∧ (𝐵 ∨ ¬𝐴 ∨ 𝐶)

Solution 1.6

• D,¬C. This choice is correct. There are no unit clauses. D is pure. When D
simplified A and ¬C are equally valid solutions.

• C,A,B. This choice is wrong as C is not pure
• C,A,D. See above.
• C,A,¬B. See above.
• C,B,A. See above.

Solution 1.7
𝐶𝑁𝐹 ((𝑞 ∧ 𝑝) ∨ ¬𝑝)

𝐶𝑁𝐹 ((𝑞 ∧ 𝑝) ) ⊗ 𝐶𝑁𝐹 ( ¬𝑝)
(𝐶𝑁𝐹 (𝑞 ) ∧ 𝐶𝑁𝐹 ( 𝑝)) ⊗ ¬𝑝

(𝑞 ∧ 𝑝) ⊗ ¬𝑝
(𝑞 ∨ ¬𝑝) ∧ (𝑝 ∨ ¬𝑝)

Solution 1.8

𝐶𝑁𝐹 ((𝑝 ⊃ 𝑞) ≡ (¬𝑞 ⊃ ¬𝑝))
𝐶𝑁𝐹 ((𝑝 ⊃ 𝑞) ⊃ (¬𝑞 ⊃ ¬𝑝) ) ∧ 𝐶𝑁𝐹 ( (¬𝑞 ⊃ ¬𝑝) ⊃ (𝑝 ⊃ 𝑞))
(𝐶𝑁𝐹 ((¬(p ⊃ q)) ) ⊗ 𝐶𝑁𝐹 ( (¬q ⊃ ¬p))) ∧ (𝐶𝑁𝐹 ((¬(¬q ⊃ ¬p)) ) ⊗ 𝐶𝑁𝐹 ( (p ⊃ q)))
(𝐶𝑁𝐹 (p ) ∧ 𝐶𝑁𝐹 ( ¬𝑞) ) ⊗(𝐶𝑁𝐹 (q ) ⊗ 𝐶𝑁𝐹 ( ¬p)) ∧ (𝐶𝑁𝐹 ((¬𝑞) ) ∧ 𝐶𝑁𝐹 ( p))⊗
(𝐶𝑁𝐹 (¬p ) ⊗ 𝐶𝑁𝐹 ( q))
(𝑝 ∧ ¬𝑞) ⊗ (𝑞 ⊗ ¬𝑝) ∧ (¬𝑞 ∧ 𝑝) ⊗ (¬𝑝 ⊗ 𝑞)
(𝑝 ∧ ¬𝑞) ⊗ (𝑞 ∧ ¬𝑝) ∧ (¬𝑞 ∧ 𝑝) ⊗ (¬𝑝 ∧ 𝑞)
(𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑝) ∧ (¬𝑞 ∨ 𝑞) ∧ (¬𝑞 ∨ ¬𝑝) ∧ (¬𝑞 ∨ ¬𝑝) ∧ (¬𝑞 ∨ ¬𝑝) ∧ (¬𝑞∨
𝑞) ∧ (𝑝 ∨ ¬𝑝) ∧ (𝑝 ∨ 𝑞)

Solution 1.9
𝐶𝑁𝐹 ((𝑝 ∧ 𝑟) ⊃ 𝑞)

𝐶𝑁𝐹 ((¬(𝑝 ∧ 𝑟)) ) ⊗ 𝐶𝑁𝐹 ( 𝑞)
(𝐶𝑁𝐹 ((¬𝑝) ) ⊗ 𝐶𝑁𝐹 ( ¬𝑟)) ⊗ 𝑞

(¬𝑝 ⊗ ¬𝑟) ⊗ 𝑞

(¬𝑝 ∨ ¬𝑟) ⊗ 𝑞

(¬𝑝 ∨ ¬𝑟 ∨ 𝑞)
Solution 1.10

𝐶𝑁𝐹 (¬(𝐴 ∨ 𝐵)) ⊗ 𝐶𝑁𝐹 (¬𝐴)
(𝐶𝑁𝐹 (¬𝐴) ∧ 𝐶𝑁𝐹 (¬𝐵)) ⊗ 𝐶𝑁𝐹 (¬𝐴)

(¬𝐴 ∧ ¬𝐵) ⊗ ¬𝐴
(¬𝐴 ∨ ¬𝐴) ∧ (¬𝐵 ∨ ¬𝐴)

¬𝐴 ∧ (¬𝐵 ∨ ¬𝐴)
In terms of clauses becomes ¬ A, ¬ B ,¬ A
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Solution 1.11

𝐶𝑁𝐹 (𝐶 ⊃ ¬𝐴) ∧ 𝐶𝑁𝐹 (¬(𝐵 ∧ ¬𝐴))
(𝐶𝑁𝐹 (¬𝐶) ⊗ 𝐶𝑁𝐹 (¬𝐴)) ∧ (𝐶𝑁𝐹 (¬𝐵) ⊗ 𝐶𝑁𝐹 (¬¬𝐴))

(¬𝐶 ∨ ¬𝐴) ∧ (¬𝐵 ∨ 𝐴)

In terms of clauses becomes ¬ C,¬ A, ¬ B, A

Check satisfiability via CNN

Solution 1.12 Here is the solution by using DPLL:

1. (¬ p ∨ q) ∧ (¬ r ∨ q)
2. {{¬p, q}, {¬r, q} }
3. {{¬p, ⊤}, {¬r, ⊤} }|𝑞
4. {}

Solution 1.13 Here is the solution by using DPLL:

1. (𝑝 ∨ 𝑞) ∧ (𝑝 ∨ ¬𝑝) ∧ (¬𝑞 ∨ 𝑞) ∧ (¬𝑞 ∨ ¬𝑝) ∧ (¬𝑞 ∨ ¬𝑝) ∧ (¬𝑞 ∨ ¬𝑝) ∧ (¬𝑞∨
𝑞) ∧ (𝑝 ∨ ¬𝑝) ∧ (𝑝 ∨ 𝑞)

2. {{𝑝, 𝑞}, {𝑝,¬𝑝}, {¬𝑞, 𝑞}, {¬𝑞,¬𝑝}, {¬𝑞,¬𝑝}, {¬𝑞,¬𝑝}, {¬𝑞, 𝑞}, {𝑝,¬𝑝}, {𝑝, 𝑞}}
3. {{⊤, 𝑞}, {⊤,⊥}, {¬𝑞, 𝑞}, {¬𝑞,⊥}, {¬𝑞,⊥}, {¬𝑞,⊥}, {¬𝑞, 𝑞}, {⊤,⊥}, {⊤, 𝑞}}|𝑝
4. {{¬𝑞, 𝑞}, {¬𝑞}, {¬𝑞}, {¬𝑞}, {¬𝑞, 𝑞}}
5. {{⊤,⊥}, {⊤}, {⊤}, {⊤}, {⊤,⊥}}|¬𝑞
6. {}

Solution 1.14 Here is the solution by using DPLL:

1. (𝑞 ∨ ¬𝑝) ∧ (𝑞 ∨ ¬𝑝)
2. {{𝑞,¬𝑝}, {𝑞,¬𝑝}}
3. {{𝑞,⊤}, {𝑞,⊤}}|¬𝑝
4. {}

Solution 1.15 Here is the solution by using DPLL:

1. (𝑞 ∨ ¬𝑝) ∧ (¬𝑞 ∨ 𝑝) ∧ (𝑝 ∨ 𝑞)
2. {{𝑞,¬𝑝}, {¬𝑞, 𝑝}, {𝑝, 𝑞}}
3. {{𝑞,⊤}, {¬𝑞,⊥}, {⊥, 𝑞}}|¬𝑝
4. {{¬𝑞}, {𝑞}}
5. {{⊥}, {⊤}}|𝑞
6. {{}}

Solution 1.16

{{𝑝}, {¬𝑝,¬𝑞}, {¬𝑞, 𝑟}}
{{𝑝}, {¬𝑝,¬𝑞}, {¬𝑞, 𝑟}} |𝑝
{{⊤} , { ⊥,¬𝑞}, {¬𝑞, 𝑟}}
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{{¬𝑞}, {¬𝑞, 𝑟}}
{{¬𝑞}, {¬𝑞, 𝑟}} |¬𝑞
{{⊤}, {⊤, 𝑟}}
{}

𝜙 is satisfiable, and 𝐼 = {𝑝,¬𝑞}. The literal 𝑟 is left undefined, because in order
to satisfy the formula there is no need to evaluate it. This is an example of partial
evaluation.

Solution 1.17

{{𝑝}, {¬𝑝}, {¬𝑞, 𝑟}}
{{𝑝}, {¬𝑝}, {¬𝑞, 𝑟}}|𝑝
{{⊤}, {⊥}, {¬𝑞, 𝑟}}
{{}, {¬𝑞, 𝑟}}
{. . . , {}, . . .}

The second clause cannot be verified, and thus the entire formula is not satisfiable.

Solution 1.18

{{B}, {¬A}, {¬C, A}, {B, C}}
{{⊤}, {¬A}, {¬C, A}, {⊤, C}}
{{¬A}, {¬C, A}}
{{⊤}, {¬C, ⊥}}
{{¬C}}
{{⊤}}
{}

Therefore the formula is satisfiable. A possible model M = ¬A, B, ¬C.

Solution 1.19 First convert it in CNF: (¬ C ∨ A) ∧ (¬ C ∨ B) ∧ (¬ A ∨ ¬ B)
In terms of clauses is: {{¬C, A}, {¬C, B}, {¬A, ¬B}}
We can apply the pure literal:

{{¬C, A}, {¬C, B}, {¬A, ¬B}}
{{⊤, A}, {⊤, B}, {¬A, ¬B}}
{{¬A, ¬B}}

We then select a literal for the splitting rule:

{{¬A}, {¬A, ¬B}}
{{⊤}, {⊤, ¬B}}
{}

Therefore the formula is satisfiable.

Solution 1.20 There are no unit clauses, nor pure literals. Let us then select the
literal A and apply the splitting rule.

{{A}, {¬A, C, D}, {¬B, F, D}, {¬B, ¬F, ¬C}, {¬D, ¬B}, {B, ¬C, ¬A}, {B, F,
C}, {B, ¬F, ¬D}, {A, E}, {A, F}, {¬F, C, ¬E}, {A, C, ¬E}}
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{{⊤}, {⊥, C, D}, {¬B, F, D}, {¬B, ¬F, ¬C}, {¬D, ¬B}, {B, ¬C, ⊥}, {B, F, C},
{B, ¬F, ¬D}, {⊤, E}, {⊤, F}, {¬F, C, ¬E}, {⊤, C, ¬E}}
{{C, D}, {¬B, F, D}, {¬B, ¬F, ¬C}, {¬D, ¬B}, {B, ¬C}, {B, F, C}, {B, ¬F,
¬D}, {E}, {F}, {¬F, C, ¬E}, {C, ¬E}}
{{C, D}, {¬B, F, D}, {¬B, ¬F, ¬C}, {¬D, ¬B}, {B, ¬C}, {B, F, C}, {B, ¬F,
¬D}, {⊤}, {F}, {¬F, C, ⊥}, {C, ⊥}}
{{C, D}, {¬B, F, D}, {¬B, ¬F, ¬C}, {¬D, ¬B}, {B, ¬C}, {B, F, C}, {B, ¬F,
¬D}, {F}, {¬F, C}, {C}}
{{C, D}, {¬B,⊤, D}, {¬B,⊥, ¬C}, {¬D, ¬B}, {B, ¬C}, {B,⊤, C}, {B,⊥, ¬D},
{⊤}, {⊥, C}, {C}}
{{C, D}, {¬B, ¬C}, {¬D, ¬B}, {B, ¬C}, {B, ¬D},{C}, {C}}
{{⊤, D}, {¬B, ⊥}, {¬D, ¬B}, {B, ⊥}, {B, ¬D}, {⊤}, {⊤}}
{{¬B}, {¬D, ¬B}, {B}, {B, ¬D}}
{{⊤}, {¬D, ⊤}, {⊥}, {⊥, ¬D}}
{{¬D}, {}, {¬D}}

There is an empty clause. Therefore it returns false. We need to check with the literal
¬A:

{{¬A}, {¬A, C, D}, {¬B, F, D}, {¬B, ¬F, ¬C}, {¬D, ¬B}, {B, ¬C, ¬A}, {B,
F, C}, {B, ¬F, ¬D}, {A, E}, {A, F}, {¬F, C, ¬E}, {A, C, ¬E}}

Solution 1.21 First convert it in CNF: (¬B ∨ A) ∧ ¬A ∧ B
In terms of clauses is: {{¬B, A}, {¬A}, {B}}

{{¬B, A}, {¬A}, {B}}
{{¬B, ⊥}, {⊤}, {B}}
{{¬B}, {B}}
{{⊤}, {⊥}}
{{}}

There is an empty clause, therefore it returns false.
Therefore the formaula is unstatistiable.

Solution 1.22 First negate the formula: ¬((A ⊃ B) ⊃ (¬B ⊃ ¬A))
Then convert it in CNF: (¬A ∨ B) ∧ ¬B ∧ A
In terms of clauses is: {{¬A, B}, {¬B}, {A}}

{{¬A, B}, {¬B}, {A}}
{{¬A, ⊥}, {⊤}, {A}}
{{¬A}, {A}}
{{}}

There is an empty clause, therefore it returns false.
Therefore the formaula is valid.
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